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The stochastic models (SM) computer simulation method for treating many-
body systems in thermodynamic equilibrium is investigated. The SM
method, unlike the commonly used Metropolis Monte Carlo method, is
not of a relaxation type. Thus an equilibrium configuration is constructed
at once by adding particles to an initially empty volume with the help of a
model stochastic process. The probability of the equilibrium configurations
is known and this permits one to estimate the entropy directly. In the
present work we greatly improve the accuracy of the SM method for the
two- and three-dimensional Ising lattices and extend its scope to calculate
fluctuations, and hence specific heat and magnetic susceptibility, in addi-
tion to average thermodynamic quantities like energy, entropy, and mag-
netization. The method is found to be advantageous near the critical
temperature. Of special interest are the results at the critical temperature
itself, where the Metropolis method seems to be impractical. At this tem-
perature, the average thermodynamic quantities agree well with theo-
retical values, for both the two- and three-dimensional lattices. For the
two-dimensional lattice the specific heat exhibits the expected logarithmic
dependence on lattice size; the dependence of the susceptibility on lattice
size is also satisfactory, leading to a ratio of critical exponents y/v =
1.85 + 0.08. For the three-dimensional lattice the dependence of the
specific heat, long-range order, and susceptibility on lattice size leads to
similarly satisfactory exponents: « = 0.12 1 0.03, § = 0.30 * 0.03, and
y = 1.32 4 0.05 (assuming » = 2/3).

KEY WORDS: Stochastic models; Monte Carlo; critical behavior; Ising
lattice.

1. INTRODUCTION

A computer simulation method for treating many-body systems in thermo-
dynamic equilibrium was suggested some years ago by Alexandrowicz.™®
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This method, called the stochastic models (SM) method, was applied pre-
liminarily to the two- and three-dimensional Ising models and to a fluid
model consisting of hard cubic molecules with an attractive potential.®
Most simulation methods (like the Metropolis Monte Carlo % and molecu-
lar dynamics™® methods) are of a relaxation type, i.e., one starts with an
arbitrary initial configuration of the system, which relaxes by means of a
certain process to the typical equilibrium configurations. In the SM method
an equilibrium configuration is obtained in a different way; not as an out-
come of a relaxation process, but as an immediate result of a construction
procedure based on adding particles gradually to an empty volume. This
approach, though approximate in most cases, has several advantages, such
as the ability to calculate entropy and the possibility of treating systems close
to the critical temperature. In the present work we greatly improve the
accuracy of the SM method and extend its scope to calculate specific heat
and susceptibility, in addition to energy and entropy, for the two- and three-
dimensional Ising models. The efficiency of the method is examined in detail
near and at the critical temperature.

2. SAMPLING IN THE CANONICAL ENSEMBLE

Consider a system in equilibrium which can be described by the canonical
distribution, e.g., the probability p; of the ith configuration is given by

Py = Z7* exp(— Ei[kT) 1)

where E; is its microscopic energy, Z is the partition function, & is the Boltz-
mann constant, and 7 is the absolute temperature. With this probability
distribution the statistical average {(G)> and the variance {AG®> of any
microscopic quantity G; are defined by

(G = D PG @

alli

(AG® = > P(G; — (G))? 3)

alli

To estimate {G> one can sample independently # configurations with the
probability P;, calculating the arithmetic average G,:

n
Gn = n—l Z Gi(t) (4)
t=1

where G, corresponds to the configuration 7 at time z. The mean value of
G, equals <G> and its variance (AG,2> decreases with n as®

(AG,?) = {AG®)[n )
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Therefore, the sample size n required to obtain a good estimation of {(G)
depends on the magnitude of {AG?)>. In general, the variance of thermo-
dynamic quantities such as energy per particle decrease as N~1, where N
denotes the number of particles. Therefore, » can be relatively small for
large enough systems. (Close to the critical temperature the variance de-
creases much slower with N and one has to increase #.)

In most cases the Boltzmann distribution [Eq. (1)] is unknown and one
has to look for approximate probability distributions. In this context, let
us consider the free energy functional F(P'):

F(P) = > P/(E; + kT log P, (6)
alls
where P’ is any probability distribution defined on phase space. The mini-
mum free energy principle states that F(P') is never smaller than the exact
free energy
F(P) = > P(E, + kTlog P) )
alli
where P constitutes the Boltzmann distribution [Eq. (1)]. On the basis of
this principle, we obtain with the SM method the ‘“best” approximate
probability distribution, i.e., one that minimizes the functional F(P’) for
given restrictions. Let it be stressed that our minimization is with respect to
the sampled values of F(P'). However, this objection is not serious because
of the very small fluctuations in F(P’), due to mutual cancellation of the
fluctuations in energy and entropy. Indeed, the exact free energy F(P) has
zero fluctuations.%1D

3. THE SM METHOD

We shall explain now the SM method as applied to the square Ising
model with N = L x L spins. We denote by o, the spin variable at the
lattice site k, where o, has two possible values: +1, —1. The interaction is
only between nearest neighbor spins, and it is of a ferromagnetic type (the
coupling interaction constant J > 0). The microscopic energy E; and mag-
netization M, of a particular configuration are given, respectively, by

E = ~J o0 8)
&5
M, = (1/N) kzl o, ©

where (nn) denotes nearest neighbors. The construction of the lattice con-
figurations is carried out with a set of transition probabilities Px(+|I),
which depend on a given set of parameters x; the symbol 7 stands for a row
configuration of L spins. One begins with an empty lattice and fills the first



124 Hagai Meirovitch and Z. Alexandrowicz

[ [ L L/ L | J ] b

< k-L k-L+l k-L¥2 k-L+3
o o @ ® ® ® Q ®

k-2 k-f k k+l !

e o o o [O}--0—0-—0 O
1 1
k+ll.—2 k+l-1 k+bL

o 0o 6--0--0 0 o o0 o

Fig. 1. An illustration of the kth step of the spiral construction of the two-dimensional
Ising lattice. Closed circles denote lattice spins already specified in the previous steps
of the process, while open circles denote the still empty lattice sites. The dashed lines
connecting site k& with sites ¥ — L + 3 and k£ — 2 represent the paths by which these
spins affect the spin that has to be fixed at site k. The solid line indicates the present
“spiral” boundary conditions.

row with spins, which are distributed at random. Subsequently, the orienta-
tion of the spins on the lattice is fixed step by step by a Monte Carlo lottery
according to the Py(+|I), as explained by the following. Assume that part
of the lattice already has been constructed and we want to specify the sign
of the spin at site k (Fig. 1). Our computer program checks the signs of the
preceding L spins added to the lattice (o,_ - 04-,) and determines the
transition probability Px(+[I,) corresponding to the row configuration I
of these L spins. A random number generator supplies a number between
zero and one, which is compared with Py(+ |I). The spin at & will be 1,
with probability Py(+|7;), if the random number is smaller than or equal to
Py(+|1). If it is larger than Py(+|I,), a minus sign is fixed at site k, with
the probability Py(—|[;) = 1 — Py(+|I,). Once the construction of the
lattice configuration i has been accomplished, its microscopic energy and
the corresponding probability P,(x) become known. P;(x) is the product of
the N transition probabilities according to which the spins have been chosen:

Pyx) = H Py(0,|T) (10)

In this way, in principle, each one of the 2% lattice configurations can be
constructed with the corresponding probability P;(x), which means that a
probability (E;tribution P(x) is thus defined on phase space.

The problem is to find the best approximate probability distribution
in the sense of Eq. (6). We sample # configurations with P(x), computing
the corresponding free energy functional F(x) with the help of the estimator

Fyx) = n"t > [Eg + kT log Piy(x)] (11)
t=1

where the transition from Eq. (6) to (11) is like that from Eq. (2) to (4). We
then seek the optimal set of parameters x* giving the minimum value to
Eq. (11). For this “best” value one computes the average energy and the
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other lattice quantities of interest. Formally, the lattice construction proc-
ess, using the transition probabilities together with the spiral boundary
conditions (Fig. 1), is a Markov chain. The states of the chain are the 2"
row configurations. _

The first row of the lattice, which, to recall, is filled with randomly
oriented spins, and several following rows, which are significantly dependent
on it, are discarded from our calculation of energy, entropy, etc. In practice
it is found that the effect of the first row disappears after about ten successive
TOWS.

At this stage, after having described the SM construction procedure
and before introducing the transition probabilities in detail, it is worthwhile
to comment on several points. Our problem is to determine the probability
of fixing +1 on site k¥ while only two of its four nearest neighbor spins are
known (o4_ 4, 05_z). If the other two neighbors oy, , and o, were also
known, the answer would be simple: The probability for o, is proportional
to the Boltzmann factor explow(oyi1 + oxyr + 0x_1 + op_7)J/KT]. But
since two spins will be determined only in the future steps, we have to
“guess” their signs by taking into account the signs of the last L spins. In
order to clarify this last, somewhat vague statement, let us examine, for
example, the effect of spin o, _,. In future the strongest influence of this spin
will be on the probability determining the sign of its nearest neighbor,
Gyrr—o (Fig. D). If o,_5 = +1, this will increase the probability for ¢,, 7.5
to also be +1 (ferromagnetic interaction), which will increase in the next
step the probability of having o,,,_; = 1, and so on. In this way a chain
effect favoring + 1 is established toward the site k via site & + L.

We can now summarize the concepts that guide our choice of transi-
tion probabilities: (a) Only the last L spins are taken into account explicitly
in the transition probabilities (in a ferromagnetic way). (b) The magnitude
of the effect of each spin is expressed by a suitable parameter. This effect
decreases with increasing distance. We assume that identical parameters
correspond to any two spins located at the same distance from site &, except
for the spins in the immediate surrounding of site £. Accordingly, the transi-
tion probability P(+|I) is written as follows:

Po(+|L) = (1 + @%-1b%-1c%-L+1d %1427 7o £97) =1 (12)
where
o' =2 Yogopss + Ox_g) (13)
o = [mz @ooromos + ck_,,,+2)m‘f] / mz w14
O kf o (15)

m=k-L
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The parameters a, b, ¢, and d in Eq. (12) express the effect of the four nearest
neighbor spins defined by the labels occurring in the exponents. The param-
eter e is a parameter common to the spins at sites k — 2 and &k — L + 3,
since these two spins are separated from site k& by the same number of bonds
(broken lines in Fig. 1); ¢’ [Eq. (13)] is their normalized spin charge. The
parameter r belongs to a group of farther placed spins summed by the
normalized charge ¢” [Eq. (14)]; in the summation, individual spins are
multiplied by a decreasing function #~7/, where m is the distance (in lattice
steps) from site k, and fis a decay parameter. The number of terms occurring
in this summation is defined by another parameter /. The value of ¢” varies
in the range (—1, + 1), but for practical reasons we have allowed o” to take
only 20 distinct values. Finally, the “mean field parameter™ ¢ belongs to
the L spins summed together by the normalized charge ¢” [Eq. (15)]. In this
sum, the spins are accorded equal weights. ¢” is allowed to take only two
values; if ¢” is greater than zero, it is +1 and if ¢” is smaller than zero,
it is —1. By the above definition, we obtain a set of approximately 2300
transition probabilities, which means that many row configurations are
redundant.

It should be emphasized that although the SM method can be regarded
as a type of mean field theory,%:1® it does not necessarily lead to the mean
field critical description. Thus in the present work the effect of individual
remote spins is expressed with the help of Eq. (14). However, as the
correlation length becomes very large close to the critical temperature,
three parameters only [r, /, and f in Egs. (12) and (14)] cannot remain
sufficient.

What are the restrictions on the values of the parameters? Clearly,
a, b, c,d, e r, and f vary in the range [0, 1]; a parameter with small values
has a higher influence on the probabilities [when all the parameters become 1,
the probability in Eq. (12) reduces to the random value of 0.5]. One expects
also the relation a < b < ¢ < d < €5 to be fulfilled because the magnitude
of the effect decreases with distance. The spins £ — 1 and & — L, in spite of
the fact that both are nearest neighbors, should not have the same effect,
because spin k — 1 affects £ by an additional path (through £ + L — 1
and K + L; see Fig. 1); hence a < b.

4, RESULTS AND DISCUSSION

The essential part of the work is the determination of the optimal param-
eters x* giving minimum of the free energy functional F,(x) averaged over
sample 7 [see Eq. (11)] for each temperature. Using the optimal parameters
x* the average energy E,(x*), magnetization M,(x*), order parameter
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| M, (x*)|, and entropy S,(x*) are calculated. The equation for the entropy
18

S.(x*) = —(k/n) tzn; log Py (x*) (16)

and for the order parameter,

| My (x*)] = n~t 2:1 [ M| (7

In order to calculate the specific heat C and the isothermal susceptibility
per spin y, the following two relations are used:

k*TC = (AE? (18)
kTy = (AM2N (19)

(AE?) and (AM?) are the variances of the energy and the magnetization,
respectively. The variance in the energy is estimated by

AE*(x*), = (1jn) Z [E,(x%) — Eg)? (20)

with a similar estimator for the variance in magnetization.

4.1. The Two-Dimensional Lattice

The results are summarized in Table I, together with the corresponding
values obtained by the accurate analytical solution and with approximate
formulas based on series expansion. For comparison, results we obtained
by using the Metropolis method are also given. .

It is important to emphasize that caution is needed while comparing
results obtained with finite lattices to the thermodynamic limit solutions. The
deviations in y and C are negligible at temperatures where ¢/L « 1 (¢ is the
correlation length®®), but become dramatically large for ¢L ~ 1. The
correlation length corresponding to K = 0.43 (K = J/kT is the reciprocal
lattice temperature) is ¢ = 23 lattice sites; hence we have taken a lattice
L = 150, which was deemed sufficiently large. For the other, noncritical
temperatures in Table 1, the correlation lengths are smaller than ¢ = 13;
hence we have taken L = 90-120.

The SM results for F, S, E, M, |M|,and Cat both K < K ,and K > K,
and for ¥ at K < K, are in good agreement with the corresponding values
obtained with the analytical solutions and series expansion approximate
formulas. The results for y in the “cold” region K > K, are much too low.
The present results are incomparably better than the results (for S, E, and



1CZ

tch and Z. Alexandrowi

irovi

Hagai Me

128

“BU poyJeur
aIB SonfeA [eOII9I00U) S[qR[IBARU[) (o1, TOUSI] PUE PUBUIPIS] JO SBINUIIOJ [IIM PIjB[NO[Rd OIB 183y oyloads pue ASIoUs oy3 JO sonjea
21BINOOR Y] %Y 1V (o) BINULIOY WOISTRdX0 21myBIodwo)-ysry ajewrxordde oyl yuMm °y > Y 18 PUB ) 1uswxoidde 9ped € Suisn paje[no
10 s1 ANTIQLIdeosns oY1 %Y < ¥ 1V (g2 991118] 9JULU] 89U} 0] SB[NWIO) FuIsn P)ejno[ed oJe 2y # 3 JOJ S}Nsal 1oBxd dy ], “urds 1od sarienof
000°0T 10§ a1e synsa1 sHodoNOW "X pue ) Y10q 10§ %S~] Pue ‘| py| pue jy 10 %10 °S 105 %ST0 “F 105 %8070 W 10§ %1070 ST s)nsax
959U} JO IOIIS [BONSIILIS POIRUIIISD O, "OZIS 90INR[ OUJ SI T (a5 dN[BA [BONID ST ST **'890bY°0 = Y PU®R ‘L¥y/r = Y ‘danjerdduo) Sulsy
[8201d1951 U3 SI Y "(Uolsuedxd SOLISS JO [BONIA[BUR) SPOYISUI [EDIISIONY) UM PUR (5, POYISW S[JOdOIOIA OLIQWIASE 3} [1IA ‘poylawr
NS 9731 Yia paureiqo X Ayiqndoosns pue ¢ 1esy ouads ‘| py| 1opio oSurI-Suo] ‘py uoneznousew ‘g AdoIjus ‘g 4810Ud i ASIOUD 931 »

8 LT 0T SO'T IO'T OI'l TS80 +S80 LS80 TSRO PS80 LSS0 LOTO SOTO  PEQ'T 9€9°1 BEY'T  96VLE’0  88FLE'O oamq.qe
9 Ly ve STT LI'T STT €180 8IS0 0T8O SIS0 8IB0 0T8O TETO TETO  ISS'T €8S°T 08S'T  L88S6'0 SL8S6'O o Mv.qo
o1 o1 S Ol SP'L OF'1  88L'0 LBL'O 96L°0 88L°0 L8L'O 96L°0 9¥TO SPTO  0SS'T 8¥S'T ISS'T  OIS6’0  T60S60 camW.M
vy 0SE 008y  0S'C 0S'T 9T ‘BU QIS0 600 ‘wu QIS0 L9S°0  HOE'O HOE0  6IV'T TIVI 6IF1  bLET6D TP6TE0 “ Hdw
By 00y  00LT  SET STT €T TU 890  LOO BU /90 OLS'0  YOE0 POE0  ITH'I. TIFY 61K LL6T6'0  ¥H6T60 % Hdw
Ll 00€  O¥PI  BI'C €TT YET  BU Q0PSO LOO B 8LC'0  €LS°0  TOE0 POE'0  ¥TYI 6IVT STY'I S86T60  LYV6T6'0 v Nw
e ¥z 0z9 S6'1 OL'T 861  BU L[9°0  90°0 B'U 890 S8S°0  00E£'0 6620 OEK'T THY'I  6ZK'T  600£6'0 8S6T6'0 ” |°w
L¥9 0SE€  OSY £S°T SS°T 91 e [0 S00°0  B'W LEY'0 HII0 9SE'0 8SE0  O00E'T TOET $6TI  9TSIE0  TISI60 ot Mv.M
$0T S61 081 0TI LI'T 8TT  EBU €0°0  LOOOO TU L60°0 880'0 88€'0 68£'0 9TC'I LITT HLTE  ¥ITO60  9ST06°0 o N[v.w
zo1 001 001 00'I ZO'I 00T  BU 100 Y000 U 690°0 890°0 FIFO SIF0  €9I'T €9I'T O09I'T  0LO68'0 $9068°0 o mq.o
9 0s 09 98°0 780 §8°0 EU  $00'0 £00°0 B $90°0  $90°0  LEP'O  PEV'O  90U'T 90I'T SOI'l  9€6L8'0 PE6L8O % %.o
0dUL IR WS CO9UL ‘IPW NS 0L IO IS '02qY, IPW WS C0YL WS CO9UL MBI WS *oayy, WS X
N/ ANID W 2l ANIS LNT— AN/~

» 99011187 BuIs| [RUOISUBWIQ-OM] @y} IO} s}jnsay °| 8|qey.



The Stochastic Models Method 128

M alone) obtained in the original article” describing the SM method. That,
of course, is due to the present use of much more sophisticated model
transition probabilities.

The Monte Carlo results were obtained with the asymmetric Metropolis
procedure,® using periodic boundary conditions. At each temperature the
averages are for 10* lotteries per spin. To get rid of the initial relaxation,
this averaging was started only after 10° lotteries per spin.

Of special interest are the results obtained at the critical reciprocal
temperature K,. We made calculations for four lattices from L = 40 to
L = 120. The values of the free energy, energy, entropy, and specific heat
calculated with the Ferdinand and Fisher formulas® at K, are in very good
agreement with our results (see Table I). The finite-size behavior of the
magnetic properties (x and |M|) is not known analytically; hence we com-
pare our results to Fisher’s finite-size scaling theory.%:*" According to
this theory (see also Refs. 18-21) the susceptibility y of a finite L x L lattice
should increase with L as

x = BL™  at K, and for large L 2D

where B is a constant, and y and » are the exponents related to the sus-
ceptibility and to the correlation length, respectively.** A similar relation
is expected for |M|, the exponent B replacing y. A plot of log x vs. log L
gave a straight line with slope 1.85 + 0.08, while the expected theoretical
value is 1.75 (v = 1,y = 1.75), and B = 0.7 + 0.1 (Landau,®*® using the
Metropolis method, obtained B = 1.00 + 0.04). The absolute magnetization
at K, decreases with increasing L, but the decrease is less than that corre-
sponding to the expected theoretical value 8 = 4. For illustration, pictures
of lattices simulated at K, are also presented in Figs. 2 and 3, showing the
ramified structure of the big droplets.

It is of interest to compare the accuracy of the SM and Metropolis
methods. With the SM method the configurations are sampled almost inde-
pendently (except for the last row of one lattice serving as neighbor to the
first row of the next lattice). Therefore, a relatively small number of con-
figurations is required to estimate averages. As a matter of fact, the fluctua-
tions also converge quite rapidly. At K # K, we took 1000 configurations.
At K, the sample size has to be increased and we took 3000-4000 configura-
tions. Assuming that the configurations are sampled independently, we can
calculate, for instance, the standard deviations {A%2M,>'/2 [see Egs. (5) and

(19)],
S A ? 22)

Taking n» = 1000 and the x values from Table I, we obtain for K = 0.40,
0.41, 0.42, and 0.43 the corresponding values of the standard deviation
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Fig. 2. A typical configuration of a lattice of 120 x 120 spins at X.. The absolute
magnetization |M| = 0.60, which is near average.

0.027, 0.0026, 0.0035, and 0.0041, which are all larger than the values of M
in Table 1. This seems to justify the use of Eq. (22) for statistical error esti-
mation of the SM results at K < K,. However, at K, itself the standard
deviation calculated by Eq. (22) is ~0.01 for all the lattices, which is several
times smaller than the observed values of magnetization. This might be
because lattice configurations sampled at K, are not entirely uncorrelated.

It is incorrect to use Eq. (22) for the Metropolis method, due to the
strong correlations between successive configurations in the sample. In order
to check the rate of convergence of the Metropolis relaxation, we shall use
an approximated formula derived by Miiller-Krumbhaar and Binder,®®
The formula for the standard deviation of the average magnetization for n
correlated lotteries per spin {AZM,>*Y2 is

CARMY*Y2 = fy[nteL (23)

where A is a constant. The (A2M,>*'/2 values for K = 0.40, 0.41, 0.42, and
0.43 are, respectively, 0.00066, 0.0083, 0.017, and 0.043 if we take 4 = 1
in Eq. (23). Comparison to the corresponding M values in Table I shows
that actual A4 values are about 2-6 times larger than that.
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Fig. 3. A typical configuration of a lattice of 120 x 120 spins at K,. The absolute
magnetization [M| = 0.06, representing the nonmagnetized configurations of the
ensemble.

At K, itself Eq. (23) is not valid and the convergence of the Metropolis
method becomes exceedingly poor due to the very strong correlation between
the sampled lattice configurations. This can be seen from the results for
M and |M| in Table I. For L = 40 and 64 we found M ~ |M|, even though
during the process the lattice reversed its magnetization twice. For L = 90
and 120, the magnetization was not reversed at all and the corresponding
values of y are, of course, meaningless. These difficulties can be removed to
some extent by calculating averages over several runs, each starting from a
different initial configuration.®®?

The conclusion from the foregoing discussion is that for a comparable
accuracy the Metropolis method requires a sample size which is larger by
x/2 than that of the SM method [or even larger than that in view of 4 ~ 2-6
in Eq. (23)]. The difference becomes important as x increases sharply near
K. Indeed, the difficulty of obtaining statistically adequate samples with
the Metropolis method gives rise to a great uncertainty as to whether a
process has been run long enough to yield reliable equilibrium values of
M, x, C, etc, In practice one tends to discontinue the process when averages
of these quantities become approximately equal to values known from other
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sources. How misleading such judgments can be is illustrated by the following
typical examples: At K = 0.43 and L = 150, we carried out 12,000 lotteries
per spin (lps) with the Metropolis method. The average y values between
7000 and 10,000 seemed to reach stability around y = 350, but after 11,000
Ips x “jumped” suddenly to the (correct) value of 650. The opposite occurred
at K = 0.45 and L = 64; we obtained between 8000 and 12,000 apparently
steady values y = 15, which is near the correct value. However, after
13,000 lps, x jumped to 80, since for some time the lattice magnetization
fell to almost zero. The SM method, which requires a much smaller sample
size, avoids such a difficulty, but has a price to pay. First, more parameters
are needed to define an adequate set of transition probabilities, and second,
longer computer time is required for the calculation of a particular transition
probability as more and more spins need to be taken into account in Egs.
(14) and (15), due to increasing correlation length.

Turning to K, itself, the SM method enabled us to estimate reasonably
well the critical exponents directly from experimental data and for quite
large lattices. This feat we could not achieve with the help of the Metropolis
method. True critical behavior has been studied with the help of Metropolis
measurements of relatively small lattices not at, but near, K,. Such a study
has been carried out recently by Landau,®® relying on Fisher’s finite-size
scaling theory.*%1" However, (1) the critical exponents are not calculated
directly from raw experimental data, which makes their accuracy difficult
to judge, and (2) the most important data are those near K, and it is not
quite certain whether the lattices are large enough to obey the asymptotic
behavior. (This doubt we raise in view of measurements we have carried out
with comparable lattices; similar doubts have been discussed by Binder ?4-29
and Landau.®®) We now give an example of the times required by each of
the two methods (on an IBM 370/165 computer) at K = 0.42 and L = 120,
at which their accuracy is about the same. The SM method required 0.8 sec
for constructing one lattice configuration [using / = 16 in Eq. (14)]; the
sample size for the initial optimization was ~ 100, and about 50 points
(distinct sets of parameter values) are tested. About the same computing
time was required for a second improved optimization which used a larger
sample size and fewer points. Thus the total time amounted to about 3 h.
With the Metropolis method, one lattice cycle required 0.2 sec; hence a run
of 12,000 Ips amounted to about $h. At K, (L = 120) the SM method
required about four times larger sample size, hence four times larger opera-
tion. The time of the Metropolis method remains, of course, the same, but
the results, for y especially, are very far from any sort of convergence.

Finally, we comment on the behavior of our parameters. Typical values
are presented in Table II. The prediction from the previous section, namely
that a < b < ¢ < d < %%, is borne out. We verified also our conjecture
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Table [I. Optimal Parameters for the Two-Dimensional Ising Lattice for Three
Temperatures?

K a b c d e r t f )

0.46 0.357  0.402 0.704  0.856 0.872 0.856  0.590 3.0 9
K, 0.354  0.407 0.700  0.833 0852  0.714  0.853 24 14
0.41 0.381 0.441 0.719 0.852 0.852 0.784  0.994 24 11

@ K is the reciprocal Ising temperature. The parameters are defined in Egs. (12)—(14).

that two spins with the same distance from site k£ have the same influence.
This was done at K = 0.40, where ¢ is small, by constructing a model of
transition probabilities which accords a separate parameter to each of the
eight nearest spins to site k. After optimization, equal values of parameters
were obtained for any pair of equidistant spins. As for the decay parameter
/, which determines the decay of correlations with distance, it was found
to be greater for K > K, than for K < K.. This agrees with the asymptotic
form for the spin-spin correlation function (near K, for large separation
distance r)“®

exp(—€-r)fr2 forK > K, and exp(—¢&-'r)/r? forK < K,
24

The mean field parameter also behaves as expected: It is small [hence im-
portant in Eq. (12)] for K > K, and becomes ~1 for K < K,. We also
checked the assumption (a) from the previous section that only the effect
of the last L spins has to be taken explicitly into account in the transition
probabilities. This verification was carried out by including explicitly in the
transition probabilities the influence of the “covered” spins (i.e., those
with site indices smaller than & — L). These models of transition probabili-
ties gave much larger free energy, which justifies our assumption of consider-
ing the last “uncovered” spins only.

All these properties greatly facilitate the minimization procedure and
enable one to consider a relatively large number of parameters. The search
for optimal parameter values is also facilitated by, first, their smooth varia-
tion from one temperature to another, and second, the fact that the optimal
value of one parameter does not depend very much on the trial values
accorded to the other parameters.

4.2. The Three-Dimensional Lattice

The simulation of the three-dimensional Ising model constitutes a
straightforward generalization of the procedure used for the two-dimensional
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case. One starts with an empty simple cubic lattice (L x L x L) and fills the
first layer with spins at random. The spins in the rest of the lattice are deter-
mined layer after layer, while in each layer the process is carried out row
after row. The allotments are accomplished according to a set of param-
etrized transition probabilities. In the three-dimensional case they depend
at each step of the construction on the L? “uncovered” spins that have been
already determined. Spiral boundary conditions between any two successive
layers and between two successive rows in each layer are imposed.

We shall describe now the transition probabilities in some detail.
Assume that n — 1 layers of the lattice are already filled with spins and the
spin at site k£ belonging to a certain row of the nth layer is to be determined.
The probability P(+|I,) to assign +1 at the site, where the configuration
of the last L? spins is I, is written

P(+|L) = 1/(1 + :i[i ai"tr"'t”") 25

The parameters a,, a,, and a; belong to the three nearest neighbor spins
atsitesk — 1,k — L,and k — L?, respectively (ay, 05, and o3 are their signs).
The parameters a,, as, and ag belong to the three next nearest neighbor
spins at sites k — L + 1, k — L2 + L, and k — L? + 1, respectively. The
effect of the farther placed spins is expressed, in an approximate way, by
the parameter r and the normalized charge o':

o= Somi[> S 26)
m=3 1

m=3 i=1

i=

This expression is analogous to ¢” defined in Eq. (14) for the square
lattice. The contribution of each spin in the summation above is proportional
to the factor m~7, where m is the shortest distance from site X measured on
empty lattice sites. Here j,, is the number of spins located at distance m from
site k. The parameter f is a decay parameter. As in the two-dimensional
model, only 20 distinct values between — 1 and 1 were allowed. The param-
eter / is the range parameter for this summation. Finally, in Eq. (25) ¢ is
the mean field parameter; the corresponding charge ¢” takes the value
+1 or —1 according to whether the magnetization of the layer configura-
tion I, is respectively greater or smaller than zero.

The data are summarized in Table III and compared with results ob-
tained by approximate series expansion formulas. At K # K, we have
measured cubes of L = 30. The results for F, E, S, |M|, and C are in good
agreement with the series expansion results; this also holds for y at tem-
peratures not too close to K,. Calculations were made also at the accepted
critical temperature K, = 0.22169¢7 for L = 10, 16, 20, and 30. Results
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Table 1V. Optimal Parameters for the Three-Dimensional Lattice for Three
Temperatures®

K az as as ay ds ag r f l t

0.230 0.602 0.617 0.631 0.897 0900 0900 0714 37 7 0.777
0.22169  0.608 0.625 0.646 0.893 0907 0907 0583 3.6 10 0.961
0.210 0.624 0.640 0.654 0901 0910 0910 0618 35 10 1

@ K is the reciprocal Ising temperature. The parameters are defined in Eqs. (25) and (26).

for E, S, and F obtained at K, by series expansion for the infinite lattice ®?
are in good agreement with the SM results for L = 30. The dependence
of C, x, and |M| on L at K, was interpreted with the help of the following
relationships [see Eq. (21)]:

|M| = B.L-#", x = B,L", C = BgL*" forlarge L (27)

The log-log plots of our data, assuming v = %, give as follows: 8 = 0.30 +
0.03, v = 1.32 + 0.05, and « = 0.12 £ 0.03. These results agree quite well
with the accepted theoretical values® 8 = 0.312, y = 1.25, and « = 0.125.
[In the case of |M| and y the result for L = 30 deviates somewhat from the
line; in the case of C the result for L = 10 deviates completely from the
line but such a lattice size seems to be too small to fit the asymptotic equa-
tion (27); see Ref. 26.]

For the sake of concreteness, the optimal parameters for three tempera-
tures are presented in Table IV. Their behavior is similar to that obtained
for the two-dimensional lattice, i.e., the effect of the spins decreases with
distance. Among ‘““equidistant” spins the strongest influence is caused by
the spin with greatest number of pathways to site k (¢, < a, < ag). In the
three-dimensional case our treatment is much more time-consuming. Here
one considers in each step the effect of 200 spins (through oy, ++ 04 and
¢'). For example, the construction of one configuration of L = 30 (and
{ = 10) required 8 sec.

4.3. Conclusions

The present work greatly improves the accuracy of the SM method as
compared to its original description.”’ The improvement is achieved through
the use of more sophisticated model transition probabilities, which carefully
distinguish among near neighbor spins and represent the individual effect of
remote spins with the help of Eq. (14).

The relative merit of the SM and of the conventional Monte Carlo
(Metropolis) method with respect to the critical behavior of Ising lattices is
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not easy to judge unequivocally. A conventional Monte Carlo simulation
of the Ising lattice, like that of any other system at equilibrium, constitutes
a trivial extension of the basic concept of computer simulation proposed
by Metropolis et al.® In contrast, the SM method is certainly much more
complicated to use, first, because it calls for an ingenious choice of the set
of transition probabilities, and second, because of the need to perform a
parameter optimization of these probabilities. The finding of the transition
probability at each step is also relatively time-consuming, because of the
dependence on a large number of nonneighbor spins. Yet, with the help
of the SM method we have been able to describe reasonably well the be-
havior of quite large lattices at K., and such measurements seem to be im-
practical with the conventional Monte Carlo method. The infinite lattice
behavior near K, is also quite well described by the SM method, with the
exception of the rather poor results for y in the cold region. We did not
study the finite-size behavior near K, (a study comparable in scope to that
of Ref. 22 would require a great deal of parameter optimizations), but in
principle the SM method is expected to perform in that respect as well as
at K, itself. Furthermore, the SM method calculates the entropy, hence the
free energy, in addition to the other thermodynamic quantities. Finally, we
dare say that it certainly seems desirable to have a reasonably accurate
simulation technique, which is independent and different in its scope from
the conventional method.
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