
Journal o f  Statistical Physics, VoL 16, No. 2, 1977 

The Stochastic Models Method Applied to the 
Critical Behavior of Ising Lattices 
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The stochastic models (SM) computer simulation method for treating many- 
body systems in thermodynamic equilibrium is investigated. The SM 
method, unlike the commonly used Metropolis Monte Carlo method, is 
not of a relaxation type. Thus an equilibrium configuration is constructed 
at once by adding particles to an initially empty volume with the help of a 
model stochastic process. The probability of the equilibrium configurations 
is known and this permits one to estimate the entropy directly. In the 
present work we greatly improve the accuracy of the SM method for the 
two- and three-dimensional Ising lattices and extend its scope to calculate 
fluctuations, and hence specific heat and magnetic susceptibility, in addi- 
tion to average thermodynamic quantities like energy, entropy, and mag- 
netization. The method is found to be advantageous near the critical 
temperature. Of special interest are the results at the critical temperature 
itself, where the Metropolis method seems to be impractical. At this tem- 
perature, the average thermodynamic quantities agree well with theo- 
retical values, for both the two- and three-dimensiona! lattices. For  the 
two-dimensional lattice the specific heat exhibits the expected logarithmic 
dependence on lattice size; the dependence of the susceptibility on lattice 
size is also satisfactory, leading to a ratio of critical exponents ~,/v = 
1.85 _+_ 0.08. For the three-dimensional lattice the dependence of  the 
specific heat, long-range order, and susceptibility on lattice size leads to 
similarly satisfactory exponents: a = 0.12 _+ 0.03, fl = 0.30 _+ 0.03, and 
~, = 1.32 _+_ 0.05 (assuming v = 2/3). 

KEY WORDS: Stochastic models; Monte Carlo; critical behavior; Ising 
lattice. 

1, I N T R O D U C T I O N  

A c o m p u t e r  s i m u l a t i o n  m e t h o d  f o r  t r e a t i n g  m a n y - b o d y  s y s t e m s  in  t h e r m o -  

d y n a m i c  e q u i l i b r i u m  was  s u g g e s t e d  s o m e  yea r s  ago  b y  A l e x a n d r o w i c z .  (1) 
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This method, called the stochastic models (SM) method, was applied pre- 
liminarily to the two- and three-dimensional Ising models and to a fluid 
model consisting of hard cubic molecules with an attractive potential. (2) 
Most simulation methods (like the Metropolis Monte Carlo (a-6) and molecu- 
lar dynamics (7'8~ methods) are of a relaxation type, i.e., one starts with an 
arbitrary initial configuration of the system, which relaxes by means of a 
certain process to the typical equilibrium configurations. In the SM method 
an equilibrium configuration is obtained in a different way, not as an out- 
come of a relaxation process, but as an immediate result of a construction 
procedure based on adding particles gradually to an empty volume. This 
approach, though approximate in most cases, has several advantages, such 
as the ability to calculate entropy and the possibility of treating systems close 
to the critical temperature. In the present work we greatly improve the 
accuracy of the SM method and extend its scope to calculate specific heat 
and susceptibility, in  addition to energy and entropy, for the two- and three- 
dimensional Ising models. The efficiency of the method is examined in detail 
near and at the critical temperature. 

2. S A M P L I N G  IN THE  C A N O N I C A L  E N S E M B L E  

Consider a system in equilibrium which can be described by the canonical 
distribution, e.g., the probability p~ of the ith configuration is given by 

P, = Z -1 e x p ( - E d k T )  (1) 

where E~ is its microscopic energy, Z is the partition function, k is the Boltz- 
mann constant, and T is the absolute temperature. With this probability 
distribution the statistical average (G) and the variance (AG 2) of any 
microscopic quantity G~ are defined by 

<o> = e , o ,  (2) 
a l l  t 

( xo = e , ( c ,  - ( o ) )  (3) 
a l l  i 

To estimate (G) one can sample independently n configurations with the 
probability P,, calculating the arithmetic average G,: 

n 

G, = n -1 ~ G,o (4) 
t = l  

where G,t) corresponds to the configuration i at time t. The mean value of 
G, equals (G) and its variance (AG, 2) decreases with n as (9~ 

( AGn 2) = (AG2)/n (5) 
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Therefore, the sample size n required to obtain a good estimation of (G} 
depends on the magnitude of (AG2}. In general, the variance of thermo- 
dynamic quantities such as energy per particle decrease as N -1, where N 
denotes the number of particles. Therefore, n can be relatively small for 
large enough systems. (Close to the critical temperature the variance de- 
creases much slower with N and one has to increase n.) 

In most cases the Boltzmann distribution [Eq. (1)] is unknown and one 
has to look for approximate probability distributions. In this context, let 
us consider the free energy functional F(P'):  

F(P') = ~ P,'(E, + k T  log P~') (6) 
a l l  

where P'  is any probability distribution defined on phase space. The mini- 
mum free energy principle states that F(P') is never smaller than the exact 
free energy 

F(P) = ~ P,(E~ + kT log P,) (7) 
a l l  

where P constitutes the Boltzmann distribution [Eq. (I)]. On the basis of 
this principle, we obtain with the SM method the "bes t"  approximate 
probability distribution, i.e., one that minimizes the functional F(P') for 
given restrictions. Let it be stressed that our minimization is with respect to 
the sampled values of F(P'). However, this objection is not serious because 
of the very small fluctuations in F(P'), due to mutual cancellation of the 
fluctuations in energy and entropy. Indeed, the exact free energy F(P) has 
zero fluctuations. (I~ 

3. T H E  S M  M E T H O D  

We shall explain now the SM method as applied to the square Ising 
model with N = L • L spins. We denote by o k the spin variable at the 
lattice site k, where ok has two possible values: + 1, - 1 .  The interaction is 
only between nearest neighbor spins, and it is of a ferromagnetic type (the 
coupling interaction constant J > 0). The microscopic energy E~ and mag- 
netization M~ of a particular configuration are given, respectively, by 

e ,  = oko  (8) 
k l  

(nn) 

N 

M, = ( l / N )  (9) 
/ c = l  

where (nn) denotes nearest neighbors. The construction of the lattice con- 
figurations is carried out with a set of transition probabilities Px(+ ]I), 
which depend on a given set of parameters x; the symbol I stands for a row 
configuration of L spins. One begins with an empty lattice and fills the first 
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~ , ~  k - L  k-L+l k-L+2 k- L-"3 

k-2 k-I k k+l I 
�9 �9 : �9 lB - - -o  . . . .  o- - - -o  o 

I u 
I 

k+L-2 k+L-I W+L 

o o 6 - - - o - - - o  o o o o 
Fig. I. An illustration of the kth step of the spiral construction of the two-dimensional 
Ising lattice. Closed circles denote lattice spins already specified in the previous steps 
of the process, while open circles denote the still empty lattice sites. The dashed lines 
connecting site k with sites k - L + 3 and k - 2 represent the paths by which these 
spins affect the spin that has to be fixed at site k. The solid line indicates the present 
"spiral" boundary conditions. 

row with spins, which are distributed at random. Subsequently, the orienta- 
tion of the spins on the lattice is fixed step by step by a Monte Carlo lottery 
according to the P, ,(+ [I), as explained by the following. Assume that part 
of the lattice already has been constructed and we want to specify the sign 
of the spin at site k (Fig. 1). Our computer program checks the signs of the 
preceding L spins added to the lattice ((rk_ z ... ~k-1) and determines the 
transition probability Px(+  [Ik) corresponding to the row configuration Ik 
of these L spins. A random number generator supplies a number between 
zero and one, which is compared with P,,(+ ]Ik)- The spin at k will be + 1, 
with probability Px(+  l/k), if the random number is smaller than or equal to 
P,~(+ ]Ik). I f  it is larger than Px(+  l/k), a minus sign is fixed at site k, with 
the probability P ,~ ( - [ Ig )=  1 - P x ( + [ I k ) .  Once the construction of the 
lattice configuration i has been accomplished, its microscopic energy and 
the corresponding probability P~(x) become known. P~(x) is the product of 
the N transition probabilities according to which the spins have been chosen: 

N 

P,(x) -- 1-I  Px(~kl/~) (10) 
/ c = ' t  

In this way, in principle, each one of  the 2 N lattice configurations can be 
constructed ~. ith the corresponding probability P~(x), which means that a 
probability distribution P(x) is thus defined on phase space. 

The problem is to find the best approximate probability distribution 
in the sense of  Eq. (6). We sample n configurations with P(x), computing 
the corresponding free energy functional F(x) with the help of the estimator 

F.(x) = n -1 ~ [E~(t) + kTlogP~(t)(x)] (11) 
t = l  

where the transition from Eq. (6) to (11) is like that from Eq. (2) to (4). We 
then seek the optimal set of parameters x* giving the minimum value to 
Eq. (11). For  this "be s t "  value one computes the average energy and the 
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other lattice quantities of interest. Formally, the lattice construction proc- 
ess, using the transition probabilities together with the spiral boundary 
conditions (Fig. 1), is a Markov chain. The states of the chain are the 2 L 
row configurations. 

The first row of the lattice, which, to recall, is filled with randomly 
oriented spins, and several following rows, which are significantly dependent 
on it, are discarded from our calculation of energy, entropy, etc. In practice 
it is found that the effect of the first row disappears after about ten successive 
rows. 

At this stage, after having described the SM construction procedure 
and before introducing the transition probabilities in detail, it is worthwhile 
to comment on several points. Our problem is to determine the probability 
of fixing + 1 on site k while only two of its four nearest neighbor spins are 
known (e~-l,  ee-L). If  the other two neighbors o~+1 and %+L were also 
known, the answer would be simple: The probability for ek is proportional 
to the Boltzmann factor exp[e~(e~+l + ek+L + ek-* + %_L)J/kT]. But 
since two spins will be determined only in the future steps, we have to 
"guess"  their signs by taking into account the signs of the last L spins. In 
order to clarify this last, somewhat vague statement, let us examine, for 
example, the effect of spin ek-2. In future the strongest influence of this spin 
will be on the probability determining the sign of its nearest neighbor, 
ee+L-= (Fig. 1). If  %_= = + 1, this will increase the probability for oe+L-2 
to also be + 1 (ferromagnetic interaction), which will increase in the next 
step the probability of having %+L-1 = 1, and so on. In this way a chain 
effect favoring + 1 is established toward the site k via site k + L. 

We can now summarize the concepts that guide our choice of transi- 
tion probabilities: (a) Only the last L spins are taken into account explicitly 
in the transition probabilities (in a ferromagnetic way). (b) The magnitude 
of the effect of each spin is expressed by a suitable parameter. This effect 
decreases with increasing distance. We assume that identical parameters 
correspond to any two spins located at the same distance from site k, except 
for the spins in the immediate surrounding of site k. Accordingly, the transi- 
tion probability Px(+ ]I) is written as follows: 

Px(+ 1I~) = (1 + a%-*b%-LC%-~.**d%-L+2e~'r~"t~') -~ (12) 

where 

~' = 2-1(~_~.+3 + ~ _ = )  (13) 

a" = (ae-L+m-1 + cr~-m+=)m-* 2rn-* (14) 
m = 5  = 

h : - - I  

G 'n = L - 1  ~ a m (15) 
m=k--L 
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The parameters a, b, c, and d in  Eq. (12) express the effect of the four nearest 
neighbor spins defined by the labels occurring in the exponents. The param- 
eter e is a parameter common to the spins at sites k - 2 and k - L + 3, 
since these two spins are separated from site k by the same number of bonds 
(broken lines in Fig. 1); a' [Eq. (13)] is their normalized spin charge. The 
parameter r belongs to a group of farther placed spins summed by the 
normalized charge ~" [Eq. (14)]; in the summation, individual spins are 
multiplied by a decreasing function m -r, where m is the distance (in lattice 
steps) from site k, and f i s  a decay parameter. The number of terms occurring 
in this summation is defined by another parameter l. The value of a" varies 
in the range ( -  1, § 1), but for practical reasons we have allowed a" to take 
only 20 distinct values. Finally, the "mean field parameter" t belongs to 
the L spins summed together by the normalized charge ~" [Eq. (15)]. In this 
sum, the spins are accorded equal weights, or" is allowed to take only two 
values; if a" is greater than zero, it is + 1 and if ,r" is smaller than zero, 
it is - 1 .  By the above definition, we obtain a set of approximately 2300 
transition probabilities, which means that many row configurations are 
redundant. 

It should be emphasized that although the SM method can be regarded 
as a type of mean field theory, (12'18~ it does not necessarily lead to the mean 
field critical description. Thus in the present work the effect of individual 
remote spins is expressed with the help of Eq. (14). However, as the 
correlation length becomes very large close to the critical temperature, 
three parameters only [r, l, and f in Eqs. (12) and (14)] cannot remain 
sufficient. 

What are the restrictions on the values of the parameters? Clearly, 
a, b, c, d, e, r, and t vary in the range [0, 1]; a parameter with small values 
has a higher influence on the probabilities [when all the parameters become 1, 
the probability in Eq. (12) reduces to the random value of 0.5]. One expects 
also the relation a < b < c < d < e ~ to be fulfilled because the magnitude 
of the effect decreases with distance. The spins k - 1 and k - L, in spite of 
the fact that both are nearest neighbors, should not have the same effect, 
because spin k - 1 affects k by an additional path (through k + L - 1 
and K + L;  see Fig. 1); hence a < b. 

4. RESULTS A N D  D I S C U S S I O N  

The essential part of the work is the determination of the optimal param- 
eters x* giving minimum of the free energy functional F,(x) averaged over 
sample n [see Eq. (11)] for each temperature. Using the optimal parameters 
x*, the average energy E,(x*), magnetization M,(x*), order parameter 
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]M.(x*)], and entropy S.(x*) are calculated. The equation for the entropy 
is 

S.(x*) = - (k/n) ~ log P,(t)(x*) (16) 
t = l  

and for the order parameter, 

]M.(x*)] = n -z ~ Im,.,I (17) 
t = l  

In order to calculate the specific heat C and the isothermal susceptibility 
per spin X, the following two relations are used: 

k2TC = (AE 2) (18) 

kT X = (AM2)N (19) 

(AE 2) and (AM 2) are the variances of the energy and the magnetization, 
respectively. The variance in the energy is estimated by 

AE2(x*). = (l/n) ~ [E.(x*) - E,(t)] 2 (20) 
t = l  

with a similar estimator for the variance in magnetization. 

4.1. The T w o - D i m e n s i o n a l  Lat t ice  

The results are summarized in Table I, together with the corresponding 
values obtained by the accurate analytical solution and with approximate 
formulas based on series expansion. For comparison, results we obtained 
by using the Metropolis method are also given. 

It is important to emphasize that caution is needed while comparing 
results obtained with finite lattices to the thermodynamic limit solutions. The 
deviations in :g and C are negligible at temperatures where ~/L << 1 (~: is the 
correlation length~14~), but become dramatically large for ~/L ~ 1. The 
correlation length corresponding to K = 0.43 (K = J/kT is the reciprocal 
lattice temperature) is ~: -- 23 lattice sites; hence we have taken a lattice 
L = 150, which was deemed sufficiently large. For the other, noncritical 
temperatures in Table I, the correlation lengths are smaller than ~ = 13; 
hence we have taken L = 90-120. 

The SM results for F, S, E, M, ]M], and C at both K < Ko and K > Kc 
and for X at K < Kc are in good agreement with the corresponding values 
obtained with the analytical solutions and series expansion approximate 
formulas. The results for X in the " c o l d "  region K > 1<2o are much too low. 
The present results are incomparably better than the results (for S, E, and 
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M alone) obtained in the original article (1) describing the SM method. That, 
of course, is due to the present use of much more sophisticated model 
transition probabilities. 

The Monte Carlo results were obtained with the asymmetric Metropolis 
procedure, (~ using periodic boundary conditions. At each temperature the 
averages are for 104 lotteries per spin. To get rid of the initial relaxation, 
this averaging was started only after 103 lotteries per spin. 

Of special interest are the results obtained at the critical reciprocal 
temperature Kc. We made calculations for four lattices from L = 40 to 
L = 120. The values of the free energy, energy, entropy, and specific heat 
calculated with the Ferdinand and Fisher formulas (15~ at Kc are in very good 
agreement with our results (see Table I). The finite-size behavior of the 
magnetic properties (X and IMI) is not known analytically; hence we com- 
pare our results to Fisher's finite-size scaling theory. (16,~7~ According to 
this theory (see also Refs. 18-21) the susceptibility X of a finite L x L lattice 
should increase with L as 

X = BLrf" at Kc and for large L (21) 

where B is a constant, and 7 and v are the exponents related to the sus- 
ceptibility and to the correlation length, respectively. (14~ A similar relation 
is expected for I M[, the exponent fl replacing 7. A plot of log X vs. log L 
gave a straight line with slope 1.85 + 0.08, while the expected theoretical 
value is 1.75 (v = 1, 7 = 1.75), and B = 0.7 + 0.1 (Landau, (22~ using the 
Metropolis method, obtained B = 1.00 _+ 0.04). The absolute magnetization 
at Kc decreases with increasing L, but the decrease is less than that corre- 
sponding to the expected theoretical value fi = ~r. For illustration, pictures 
of lattices simulated at Kc are also presented in Figs. 2 and 3, showing the 
ramified structure of the big droplets. 

It is of interest to compare the accuracy of the SM and Metropolis 
methods. With the SM method the configurations are sampled almost inde- 
pendently (except for the last row of one lattice serving as neighbor to the 
first row of the next lattice). Therefore, a relatively small number of con- 
figurations is required to estimate averages. As a matter of fact, the fluctua- 
tions also converge quite rapidly. At K r Kc we took 1000 configurations. 
At Kc the sample size has to be increased and we took 3000-4000 configura- 
tions. Assuming that the configurations are sampled independently, we can 
calculate, for instance, the standard deviations (A2M~) ~/2 [see Eqs. (5) and 
(19)1, 

(A2M~) ~/2 = Xl12/nl12L (22) 

Taking n = 1000 and the X values from Table I, we obtain for K = 0.40, 
0.41, 0.42, and 0.43 the corresponding values of the standard deviation 
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Fig. 2. A typical configuration of a lattice of 120 x 120 spins at Kc. The absolute 
magnetization ]MI = 0.60, which is near average. 

0.027, 0.0026, 0.0035, and 0.0041, which are all larger than the values of M 
in Table I. This seems to justify the use of Eq. (22) for statistical error esti- 
mation of the SM results at K < Kc. However, at Kc itself the standard 
deviation calculated by Eq. (22) is ~0.01 for all the lattices, which is several 
times smaller than the observed values of magnetization. This might be 
because lattice configurations sampled at Kc are not entirely uncorrelated. 

It is incorrect to use Eq. (22) for the Metropolis method, due to the 
strong correlations between successive configurations in the sample. In order 
to check the rate of convergence of the Metropolis relaxation, we shall use 
an approximated formula derived by Miiller-Krumbhaar and Binder. ~23) 
The formula for the standard deviation of the average magnetization for n 
correlated lotteries per spin (A2M~) .1/2 is 

( A2M,)*lt2 = Ax/nl/ZL (23) 

where A is a constant. The (A2M~) .1/2 values for K = 0.40, 0.41, 0.42, and 
0.43 are, respectively, 0.00066, 0.0083, 0.017, and 0.043 if we take A = 1 
in Eq. (23). Comparison to the corresponding M values in Table I shows 
that actual A values are about 2-6 times larger than that. 
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Fig. 3. A typical configuration of a lattice of 120 x 120 spins at Ko. The absolute 
magnetization IMI = 0.06, representing the nonmagnetized configurations of the 
ensemble. 

At Kc itself Eq. (23) is not valid and the convergence of the Metropolis 
method becomes exceedingly poor due to the very strong correlation between 
the sampled lattice configurations. This can be seen from the results for 
M and I M I in Table I. For  L = 40 and 64 we found M ~ I Mt,  even though 
during the process the lattice reversed its magnetization twice. For  L = 90 
and 120, the magnetization was not reversed at all and the corresponding 
values of X are, of course, meaningless. These difficulties can be removed to 
some extent by calculating averages over several runs, each starting from a 
different initial configuration. (22~ 

The conclusion from the foregoing discussion is that for a comparable 
accuracy the Metropolis method requires a sample size which is larger by 
x 1/2 than that of the SM method [or even larger than that in view of A -~ 2-6 
in Eq. (23)]. The difference becomes important as X increases sharply near 
K~. Indeed, the difficulty of obtaining statistically adequate samples with 
the Metropolis method gives rise to a great uncertainty as to whether a 
process has been run long enough to yield reliable equilibrium values of 
M, X, C, etc. In practice one tends to discontinue the process when averages 
of these quantities become approximately equal to values known from other 
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sources. How misleading such judgments can be is illustrated by the following 
typical examples: At K = 0.43 and L = 150, we carried out 12,000 lotteries 
per spin (Ips) with the Metropolis method. The average X values between 
7000 and 10,000 seemed to reach stability around x = 350, but after 11,000 
lps X " jumped"  suddenly to the (correct) value of 650. The opposite occurred 
at K = 0.45 and L = 64; we obtained between 8000 and 12,000 apparently 
steady values X = 15, which is near the correct value. However, after 
13,000 lps, X jumped to 80, since for some time the lattice magnetization 
fell to almost zero. The SM method, which requires a much smaller sample 
size, avoids such a difficulty, but has a price to pay. First, more parameters 
are needed to define an adequate set of transition probabilities, and second, 
longer computer time is required for the calculation of a particular transition 
probability as more and more spins need to be taken into account in Eqs. 
(14) and (15), due to increasing correlation length. 

Turning to Kc itself, the SM method enabled us to estimate reasonably 
well the critical exponents directly from experimental data and for quite 
large lattices. This feat we could not achieve with the help of the Metropolis 
method. True critical behavior has been studied with the help of Metropolis 
measurements of relatively small lattices not at, but near, Kc. Such a study 
has been carried out recently by Landau, ~22~ relying on Fisher's finite-size 
scaling theoryJ 16,~7~ However, (1) the critical exponents are not calculated 
directly from raw experimental data, which makes their accuracy difficult 
to judge, and (2) the most important data are those near Kc and it is not 
quite certain whether the lattices are large enough to obey the asymptotic 
behavior. (This doubt we raise in view of measurements we have carried out 
with comparable lattices; similar doubts have been discussed by Binder ~4'25~ 
and Landau. ~26~) We now give an example of the times required by each of 
the two methods (on an IBM 370/165 computer) at K = 0.42 and L = 120, 
at which their accuracy is about the same. The SM method required 0.8 sec 
for constructing one lattice configuration [using l = 16 in Eq. (14)]; the 
sample size for the initial optimization was ~ 100, and about 50 points 
(distinct sets of parameter values) are tested. About the same computing 
time was required for a second improved optimization which used a larger 
sample size and fewer points. Thus the total time amounted to about 3 h. 
With the Metropolis method, one lattice cycle required 0.2 sec; hence a run 
of 12,000 lps amounted to about �88 h. At Kc (L = 120) the SM method 
required about four times larger sample size, hence four times larger opera- 
tion. The time of the Metropolis method remains, of course, the same, but 
the results, for X especially, are very far from any sort of convergence. 

Finally, we comment on the behavior of our parameters. Typical values 
are presented in Table II. The prediction from the previous section, namely 
that a < b < c < d < e ~ is borne out. We verified also our conjecture 



The Stochastic Models Method 133 

Table II. Optimal Parameters for the Two-Dimensional  Ising Lattice for Three 
Temperatures a 

K a b c d e r t f l 

0.46 0.357 0 .402  0 .704  0 .856  0 .872  0 .856  0.590 3.0 9 
K~ 0.354 0 .407  0 .700  0 .833  0 .852  0 .714  0.853 2.4 14 

0.41 0.381 0 .441  0 .719  0 .852  0 .852  0 .784  0.994 2.4 11 

a K is the reciprocal Ising temperature. The parameters are defined in Eqs. (12)-(14). 

that two spins with the same distance from site k have the same influence. 
This was done at K = 0.40, where ~ is small, by constructing a model of 
transition probabilities which accords a separate parameter to each of the 
eight nearest spins to site k. After optimization, equal values of parameters 
were obtained for any pair of equidistant spins. As for the decay parameter 
f ,  which determines the decay of correlations with distance, it was found 
to be greater for K > Kc than for K < Kc. This agrees with the asymptotic 
form for the spin-spin correlation function (near Kc for large separation 
distance r) C14~ 

e x p ( - ~ - l r ) / r  2 for K > K~ and exp(-~- l r ) / r l J2  for K < Kc 
(24) 

The mean field parameter also behaves as expected: It is small [hence im- 
portant in Eq. (12)] for K > K~ and becomes ~ 1 for K < Kc. We also 
checked the assumption (a) from the previous section that only the effect 
of the last L spins has to be taken explicitly into account in the transition 
probabilities. This verification was carried out by including explicitly in the 
transition probabilities the influence of the "covered" spins (i.e., those 
with site indices smaller than k - L). These models of transition probabili- 
ties gave much larger free energy, which justifies our assumption of consider- 
ing the last "uncovered" spins only. 

All these properties greatly facilitate the minimization procedure and 
enable one to consider a relatively large number of parameters. The search 
for optimal parameter values is also facilitated by, first, their smooth varia- 
tion from one temperature to another, and second, the fact that the optimal 
value of one parameter does not depend very much on the trial values 
accorded to the other parameters. 

4 .2 .  T h e  T h r e e - D i m e n s i o n a l  L a t t i c e  

The simulation of the three-dimensional Ising model constitutes a 
straightforward generalization of the procedure used for the two-dimensional 
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case. One starts with an empty simple cubic lattice (L x L x L) and fills the 
first layer with spins at random. The spins in the rest of the lattice are deter- 
mined layer after layer, while in each layer the process is carried out row 
after row. The allotments are accomplished according to a set of  param- 
etrized transition probabilities. In the three,dimensional case they depend 
at each step of the construction on the L 2 "uncovered"  spins that have been 
already determined. Spiral boundary conditions between any two successive 
layers and between two successive rows in each layer are imposed. 

We shall describe now the transition probabilities in some detail. 
Assume that n - 1 layers of  the lattice are already filled with spins and the 
spin at site k belonging to a certain row of the nth layer is to be determined. 
The probability P ( +  IIk) to assign + 1 at the site, where the configuration 
of the last L 2 spins is I~, is written 

P( + Ilk) = 1 1 + I-~ a, ~'r~" t~ (25) 

The parameters a 1, az, and aa belong to the three nearest neighbor spins 
at sites k - 1, k - L, and k - L 2, respectively (~z, e2, and e3 are their signs). 
The parameters a4, as, and a6 belong to the three next nearest neighbor 
spins at sites k - L + 1, k - L z + L, and k - L 2 + 1, respectively. The 
effect of  the farther placed spins is expressed, in an approximate way, by 
the parameter  r and the normalized charge o' :  

~' = cr~rn -~ m - r  (26) 
m=3 i=1 Ira=3 i=1 

This expression is analogous to  ~" defined in Eq. (14) for the square 
lattice. The contribution of each spin in the summation above is proportional 
to the factor m -r,  where m is the shortest distance from site k measured on 
empty lattice sites. Herejm is the number of  spins located at distance m from 
site k. The parameter  f is a decay parameter. As in the two-dimensional 
model, only 20 distinct values between - 1 and 1 were allowed. The param- 
eter l is the range parameter  for this summation. Finally, in Eq. (25) t is 
the mean field parameter;  the corresponding charge a" takes the value 
+ 1 or - 1 according to whether the magnetization of the layer configura- 
tion Ie is respectively greater or smaller than zero. 

The data are summarized in Table I I I  and compared with results ob- 
tained by approximate series expansion formulas. At K r  we have 
measured cubes o f L  = 30. The results for F, E, S, [M l, and C are in good 
agreement with the series expansion results; this also holds for x at tem- 
peratures not too close to Kc. Calculations were made also at the accepted 
critical temperature Kc = 0.22169 (27) for L = 10, 16, 20, and 30. Results 
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Table IV. Optimal Parameters for the Three-Dimensional Lattice for Three 
Temperatures = 

K az a2 a8 a4 a5 a6 r f 1 t 

0.230 0.602 0.617 0.631 0.897 0.900 0.900 0.714 3.7 7 0.777 
0.22169 0 .608  0.625 0.646 0.893 0.907 0.907 0.583 3.6 10 0.961 
0.2t0 0.624 0.640 0.654 0.901 0.910 0.910 0.618 3.5 10 1 

K is the reciprocal Ising temperature. The parameters are defined in Eqs. (25) and (26). 

for E, S, and F obtained at Kc by series expansion for the infinite lattice ~27) 
are in good agreement with the SM results for L = 30. The dependence 
of C, X, and [M] on L at Kc was interpreted with the help of  the following 
relationships [see Eq. (21)]: 

I MI = BzL-BI~', X = B2 Lylv, C = B s L  '~j" for large L (27) 

The log-log plots of  our data, assuming v = ~, give as follows:/3 = 0.30 + 
0.03, y = 1.32 + 0.05, and c~ = 0.12 + 0.03. These results agree quite well 
with the accepted theoretical values ~1~/3 = 0.312, ~, = 1.25, and c~ = 0.125. 
[In the case of  I MI and X the result for L = 30 deviates somewhat from the 
line; in the case of  C the result for L = 10 deviates completely from the 
line but such a lattice size seems to be too small to fit the asymptotic equa- 
tion (27); see Ref. 26.] 

For  the sake of concreteness, the optimal parameters for three tempera- 
tures are presented in Table IV. Their behavior is similar to that obtained 
for the two-dimensional lattice, i.e., the effect of  the spins decreases with 
distance. Among "equidis tant"  spins the strongest influence is caused by 
the spin with greatest number of  pathways to site k (a~ < a2 < aa). In the 
three-dimensional case our treatment is much more time-consuming. Here 
one considers in each step the effect of  200 spins (through cr~crz ... or6 and 
~'). For example, the construction of one configuration of L = 30 (and 
l = 10) required 8 sec. 

4.3 .  C o n c l u s i o n s  

The present work greatly improves the accuracy of the SM method as 
compared to its original description, c1~ The improvement is achieved through 
the use of  more sophisticated model transition probabilities, which carefully 
distinguish among near neighbor spins and represent the individual effect of  
remote spins with the help of  Eq. (14). 

The relative merit of the SM and of the conventional Monte Carlo 
(Metropolis) method with respect to the critical behavior of  Ising lattices is 
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not easy to judge unequivocally. A conventional Monte Carlo simulation 
of the Ising lattice, like that of any other system at equilibrium, constitutes 
a trivial extension of the basic concept of computer simulation proposed 
by Metropolis et al/3~ In contrast, the SM method is certainly much more 
complicated to use, first, because it calls for an ingenious choice of the set 
of transition probabilities, and second, because of  the need to perform a 
parameter optimization of these probabilities. The finding of the transition 
probability at each step is also relatively time-consuming, because of the 
dependence on a large number of nonneighbor spins. Yet, with the help 
of the SM method we have been able to describe reasonably well the be- 
havior of quite large lattices at Kc, and such measurements seem to be im- 
practical with the conventional Monte Carlo method. The infinite lattice 
behavior near Kc is also quite well described by the SM method, with the 
exception of the rather poor results for X in the cold region. We did not 
study the finite-size behavior near Kc (a study comparable in scope to that 
of Ref. 22 would require a great deal of parameter optimizations), but in 
principle the SM method is expected to perform in that respect as well as 
at Kc itself. Furthermore, the SM method calculates the entropy, hence the 
free energy, in addition to the other thermodynamic quantities. Finally, we 
dare say that it certainly seems desirable to have a reasonably accurate 
simulation technique, which is independent and different in its scope from 
the conventional method. 
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